If it's not what You are looking for type in the equation solver your own equation and let us solve it.
32+x^2=52
We move all terms to the left:
32+x^2-(52)=0
We add all the numbers together, and all the variables
x^2-20=0
a = 1; b = 0; c = -20;
Δ = b2-4ac
Δ = 02-4·1·(-20)
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5}}{2*1}=\frac{0-4\sqrt{5}}{2} =-\frac{4\sqrt{5}}{2} =-2\sqrt{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5}}{2*1}=\frac{0+4\sqrt{5}}{2} =\frac{4\sqrt{5}}{2} =2\sqrt{5} $
| -1=-1(w+1) | | 2c-7=3c-5 | | 2*k=(2k+5) | | (5x)/(6)+4=(2)/(5) | | 2b/3-1/6=(b/2 | | a=15+9 | | 2/3-4x+7/2=-9x+5/ | | a40=−10 | | 12x+36=-x^ | | -4=-2(r+1) | | 2^(3x+4)=64 | | -10(x)=9x+3 | | (x/2)^2+64=80 | | 4y=11=51 | | 8(1.5x)+42x=1200 | | 8-3v=-17 | | 2x-8=-2x+12 | | 7+2x=10.5-5x | | 15+5v=65 | | 1/4Xm=2/3 | | 3-2b=21+7b | | 5/9(t-32)=-10 | | 6x-+8=-x^ | | 6(x)=7x-5 | | d+4=5d-4 | | 4=21+r/7 | | 2=-2(o-1) | | 31=1+7x | | 2(x-5)^2-32=0 | | 55h+275=440;h=3 | | -4+w+4=60 | | 5x^+10=0 |